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Abstract. We continue our analysis of the physics of quantum lattice gas automata
(QLGA). Previous work has been restricted to periodic or infinite lattices; simulation of
more realistic physical situations requires finite sizes and nonperiodic boundary conditions.
Furthermore, envisioning a QLGA as a nanoscale computer architecture motivates consideration
of inhomogeneities in the ‘substrate’; this translates into inhomogeneities in the local evolution
rules. Concentrating on the one-particle sector of the model, we determine the various boundary
conditions and rule inhomogeneities which are consistent with unitary global evolution. We
analyse the reflection of plane waves from boundaries, simulate wavepacket refraction across
inhomogeneities, and conclude by discussing the extension of these results to multiple particles.

1. Introduction

Shor’s discovery of a polynomial time quantum algorithm for factoring [1] stimulated a
surge of interest in quantum computation (see the extensive bibliographies of [2]). Most
work has concentrated on serial algorithms—sequences of unitary, few qubit‡ operations—
the quantum version of serial Boolean logic [4]. Single quantum logic gates have been
realized experimentally in ion traps [5] and quantum electrodynamics cavities [6], and short
sequences of such unitary operations have recently been implemented with nuclear magnetic
resonance [7]. All of these systems, as well as proposed solid-state architectures such as
arrays of quantum dots [8], exist physically ind > 0 spatial dimensions and therefore
naturally evolve inparallel. Imposing a single-gate operation restricts the rest of the qubits
to be invariant, i.e. they must evolve by the identity operator; at the opposite extreme all
the qubits would evolve according to the same, local (few qubit) operation during a single
timestep. A quantum computer evolving according to such a homogeneous, local, unitary
rule would have the quantum version of the massively parallel architecture possessed, for
example, by Margolus’ CAM machines [9].

The simplest algorithms which would run on such an architecture are quantum cellular
automata (QCA) [10] or quantum lattice gas automata (QLGA) [11]. Even ind = 1
spatial dimensions QCA are capable of universal computation [12], and the existence of
the universal reversible billiard ball computer [13] implies that QLGA are also, at least in
d > 2 spatial dimensions. Just as classical LGA are most effectively deployed to simulate

† E-mail address: dmeyer@chonji.ucsd.edu
‡ A qubit [3] is a quantum system whose state is a vector in a two-dimensional Hilbert space, e.g. a spin-1

2
particle fixed in space.
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physical systems such as fluid flow [14], however, QLGA most naturally simulate quantum
physical systems [11, 15, 16]: with the simplest homogeneous evolution rule, one-particle
QLGA simulate the constant potential Dirac [11] or Schrödinger [17] equation, depending
on the relative scaling of the lattice spacing and timestep.

An earlier paper [15] initiated a project to analyse which physical processes QLGA can
simulate effectively. In that paper and in this one we concentrate on the most general model
for a single quantum particle with speed no more than 1 in lattice units, moving on a lattice
in one dimension. The amplitudes for the particle to be (left, right) moving at a lattice point
x ∈ L are combined into a two-component complex vectorψ(t, x) := (ψ−1(t, x), ψ+1(t, x))

which evolves as

ψ(t + 1, x) = w−1ψ(t, x − 1)+ w0ψ(t, x)+ w+1ψ(t, x + 1). (1.1)

Here the weightswi ∈ M2(C) are 2× 2 complex matrices constrained by the requirement
that the global evolution matrix

U :=


. . .

w−1 w0 w+1

w−1 w0 w+1

w−1 w0 w+1
. . .

 (1.2)

be unitary. We showed in [11] that the most general parity invariant solution, up to unitary
equivalence and an overall phase, is given by

w−1 = cosρ

(
0 i sinθ
0 cosθ

)
w+1 = cosρ

(
cosθ 0
i sinθ 0

)
w0 = sinρ

(
sinθ −i cosθ
−i cosθ sinθ

)
.

(1.3)

Describing the evolution by (1.1)–(1.3) assumes that the system is homogeneous in space
and that the latticeL is isomorphic either to the integersZ or to a periodic quotient thereof,
sayZN . To simulate physical systems [18] more generally, the model should be extended
to allow for finite size and nonperiodic boundary conditions. Furthermore, envisioning a
QLGA as a nanoscale quantum computer architecture [19, 20, 2] motivates consideration of
inhomogeneities in the ‘substrate’, possibly as a step towards implementing logical gates
[4] and away from simply simulating quantum physical systems. In [15] we showed how to
introduce an inhomogeneous potential in the model; the purpose of this paper is to investigate
more general inhomogeneities in the evolution rule, including boundary conditions.

In section 2 we consider the simplest possible modification of the evolution rule (1.1) for
a boundary atx = 0, say, settingw−1 there to 0 and allowing the weightw0 to differ from
the constantw0 of the rest of the lattice. The resulting type I boundary condition suggests
the form for a corresponding type I inhomogeneity where the global evolution matrix (1.2)
is changed by replacing one of thew0 blocks with a different matrixŵ0, and allowing the
weightswi to differ on either side of the antidiagonal through it. In section 3 we show that
such an inhomogeneous rule is unitary providedθ is the same for all the weights.

There is a dual inhomogeneity across whichρ is constant butθ may differ; we describe
this type II inhomogeneity in section 4 and find the corresponding boundary condition. In
section 5 we observe that the type I and II inhomogeneities can occur together, changing
bothρ andθ . The corresponding type III boundary condition has an extra degree of freedom,
justifying distinct classification.
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In section 6 we show how to find the eigenfunctions ofU in the presence of these
boundaries. In each case the result is a linear combination of left- and right-moving plane
waves with the same frequency. On a finite lattice with two boundaries, the spectrum of
U is discrete. In section 7 we investigate the discrete spectra for pairs of each type of
boundary condition, determining how they depend on the boundary parameters and what
the consequences are for the eigenfunctions.

Simulations of wavepackets on lattices with boundary conditions and in the presence of
inhomogeneities confirms that the physical consequences of these inhomogeneous evolution
rules are as expected. We show some results in section 8.

We conclude in section 9 with a summary and a discussion of the extension of this work
to the multiple-particle sector of the Hilbert space.

2. Type I boundary conditions

If our system is neither infinite nor periodic, we must model it on a bounded lattice, e.g.
L = {x ∈ Z|06 x 6 N − 1}. Since there is no lattice point to the left of 0, it is clear that
the evolution rule (1.1) must be adjusted there (as it must also be at the right boundary).
Making the minimal change in the model, let us suppose that the global evolution matrix
takes the form

U :=


w0 w+1

w−1 w0 w+1

w−1 w0
. . .

 (2.1)

where thewi are given by (1.3). Thus a left-moving particle atx = 1 has the same
amplitudes (given byw+1) to advect tox = 0 and scatter to the left or right, and a right-
moving particle atx = 0 has the same amplitudes (given byw−1) to advect tox = 1
and scatter to the left or right, as each would, were there no boundary. (The analogous
form for the evolution rule at a right boundary is obtained by a parity transformation.) The
only differences we allow for thistype I boundary condition are in the amplitudes for the
evolution of a left-moving particle atx = 0 and for the scattering of a right-moving particle
at x = 0 which remains there during the advection step; these are given byw0.

The unitarity conditionsUU † = I = U †U impose the following constraints onw0:

I = w0w
†
0+ w+1w

†
+1 (2.2a)

0= w0w
†
−1+ w+1w

†
0 (2.2b)

and

I = w†0w0+ w†−1w−1 (2.3a)

0= w†+1w0+ w†0w−1. (2.3b)

Let

w0 :=
(
y1 y2

y3 y4

)
. (2.4)

Then, assuming cosρ 6= 0, (2.2b) implies

y2 = −i cosθ sinρ

y4 = sinθ sinρ
(2.5)
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while (2.3b) implies

y1 = iy3 tanθ. (2.6)

The normalization condition(2.2a) requires

y3 = −ieiυ cosθ (2.7)

for some arbitrary phase angleυ ∈ R. Combining (2.4)–(2.7), we find

w0 =
(

eiυ sinθ −i cosθ sinρ
−ieiυ cosθ sinθ sinρ

)
(2.8)

which satisfies all the constraints (2.2) and (2.3).
The type I boundary condition defined by (2.1) and (2.8) gives the same amplitudes as

(1.3) for the scattering of a right-moving particle atx = 0 which remains there; only the
amplitudes for the scattering of a left-moving particle atx = 0 differ from the no boundary
situation. The latter depend on a single real parameterυ characterizing the boundary. Note
also that these amplitudes do not vanish in the decoupled caseρ = 0 (whencew0 = 0).
That is,w0 6= 0 is required to define unitary boundary conditions even when the particle
has speed 1 everywhere else in the lattice.

3. Type I inhomogeneities

The boundary weightw0 defined by (2.8) has the same form as the weightw0 defined in
(1.3), except that the factor of sinρ in the first column is replaced by eiυ . Thus we can
interpret the evolution rule defined by (2.1) and (2.8) as describing a system where the
coupling constantρ satisfies cosρ = 0 at and to the left ofx = 0. This would make
w−1 = 0 = w+1, so there would be no advection to the left ofx = 0. This suggests that
thew0 we found in section 2 may be a special case of an inhomogeneity in the coupling
constantρ. So let us consider a type I evolution rule inhomogeneity of the form:

U :=


. . .

w′−1 w′0 w′+1
w′−1 ŵ0 w+1

w−1 w0 w+1
. . .

 (3.1)

where thewi =: wi(ρ, θ) are defined by (1.3) andw′i := wi(ρ ′, θ ′).
Now the unitarity conditions impose constraints on the relation between thewi and the

w′i as well as on the inhomogeneity matrix̂w0:

0= w′+1w
†
−1 (3.2a)

0= w′−1w
′†
0 + ŵ0w

′†
+1 (3.2b)

I = w′−1w
′†
−1+ ŵ0ŵ

†
0+ w+1w

†
+1 (3.2c)

0= ŵ0w
†
−1+ w+1w

†
0 (3.2d)

and

0= w′†−1w+1 (3.3a)

0= w′†0w′+1+ w′†−1ŵ0 (3.3b)

I = w′†+1w
′
+1+ ŵ†0ŵ0+ w†−1w−1 (3.3c)

0= w†+1ŵ0+ w†0w−1. (3.3d)
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Constraint(3.2a) is automatically satisfied but, again assuming that cosρ 6= 0 6= cosρ ′,
(3.3a) requires sin(θ − θ ′) = 0, so we setθ ′ ≡ θ . Using the form (2.4) forŵ0, we observe
that the constraints(3.2d) and (3.3d) are the same as(2.2b) and (2.3b), so theyi must
satisfy (2.5) and (2.6). Constraint(3.2b) requires that

y1 = sinθ sinρ ′

y3 = −i cosθ sinρ ′
(3.4)

which is consistent with (2.6), just as (2.5) is with(3.3b). Combining (2.4), (2.5) and (3.4)
we find

ŵ0 = ŵ0(ρ
′, θ, ρ) :=

(
sinθ sinρ ′ −i cosθ sinρ
−i cosθ sinρ ′ sinθ sinρ

)
(3.5)

which also satisfies the remaining (normalization) constraints in (3.2) and (3.3).
The arbitrary phase degree of freedom in the type I boundary condition is not present in

(3.5), but as anticipated, this type I inhomogeneity describes a change in the coupling
constantρ, the massθ being held fixed across the inhomogeneity. The locus of the
inhomogeneity is quite precise: a left-moving particle fromx = 0 obeys the ‘primed’
rules, while a right-moving particle obeys the ‘unprimed’ ones.

4. Type II inhomogeneities and boundary conditions

The form (3.1) of the type I inhomogeneity partitions the evolution matrixU into two pieces
across an antidiagonal through theŵ0 block (inside the block the partition runs between
the two columns). We might also consider an inhomogeneity which partitionsU across
an antidiagonal through a pair ofw−1 and w+1 blocks. Such atype II evolution rule
inhomogeneity has the form:

U :=



. . .

w′−1 w′0 w′+1
w′−1 w′0 ŵ+1

ŵ−1 w0 w+1

w−1 w0 w+1
. . .


(4.1)

where againwi = wi(ρ, θ) and w′i = wi(ρ
′, θ ′) are defined by (1.3) but witha priori

different parameters.
The unitarity conditionsUU † = I = U †U impose even more constraints in this more

complicated situation:

I = w′−1w
′†
−1+ w′0w′†0 + ŵ+1ŵ

†
+1 (4.2a)

0= w′0ŵ†−1+ ŵ+1w
†
0 (4.2b)

0= ŵ+1w
†
−1 (4.2c)

0= ŵ−1w
′†
+1 (4.2d)

I = ŵ−1ŵ
†
−1+ w0w

†
0+ w+1w

†
+1 (4.2e)

and

I = ŵ†+1ŵ+1+ w†0w0+ w†−1w−1 (4.3a)

0= ŵ†+1w
′
0+ w†0ŵ−1 (4.3b)
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0= w′†−1ŵ+1 (4.3c)

0= w†+1ŵ−1 (4.3d)

I = w′†+1w
′
+1+ w′†0w′0+ ŵ†−1ŵ−1. (4.3e)

Suppose the inhomogeneity matrices have the most general forms:

ŵ−1 :=
(
x1 x2

x3 x4

)
and ŵ+1 :=

(
z1 z2

z3 z4

)
. (4.4)

Then, assuming cosρ 6= 0, constraint(4.2c) requiresz2 = 0 = z4. Similarly, assuming
cosρ ′ 6= 0, constraint(4.2d) requiresx1 = 0 = x3. Thus the inhomogeneity matrices have
the same advection/scattering interpretation as in the homogeneous situation.

Now constraints(4.3c) and(4.3d) imply that

z3 = iz1 tanθ ′ (4.5)

and

x2 = ix4 tanθ (4.6)

respectively. Imposing the normalization constraint(4.2a) we find that

z1 = eiζ cosρ ′ cosθ ′. (4.7)

Then imposing the normalization constraint(4.3a) implies cos2 ρ = cos2 ρ ′, so we set
ρ ′ ≡ ρ. Combining (4.4), (4.5) and (4.7) gives

ŵ+1 = eiζw′+1. (4.8)

Similarly, imposing the normalization constraint(4.2e) we find that

x4 = eiχ cosρ cosθ. (4.9)

Combining (4.4), (4.6) and (4.9) gives

ŵ−1 = eiχw−1 (4.10)

which also satisfies the last normalization constraint(4.3e). The two remaining constraints
(4.2b) and (4.3b) require only thatχ ≡ −ζ (mod 2π ), which can thence be set to 0 by a
unitary transformation. Thus (4.8) and (4.10) become

ŵ−1 = w−1(ρ, θ) and ŵ+1 = w+1(ρ, θ
′). (4.11)

Just as the type I inhomogeneity described by (3.1) and (3.5) specializes to a type I
boundary condition described by (2.1) and (2.8) when cosρ ′ = 0 so that there is no advection
to the left of x = 0, the type II inhomogeneity described by (4.1) and (4.11) specializes
to a boundary condition when cosθ ′ = 0. In this situation, when a left-moving particle at
x = 1 advects tox = 0 it scatters to the right, while a right-moving particle atx = 0 which
remains atx = 0 also scatters to the right—a particle initially atx > 0 or atx = 0 and right
moving has no amplitude to be atx < 0 or at x = 0 and left moving at any subsequent
timestep.

This is a special case of the type II boundary condition which we expect to be
characterized by nontrivial phases, just as is the type I boundary condition. The ‘primed’
parameters satisfyρ′ ≡ ρ and cosθ ′ = 0, so generalizing the type II inhomogeneity by
multiplicative phases suggests

U :=


eiυw′0 eiζw′+1
w−1 w0 w+1

w−1 w0
. . .

 (4.12)
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where

w−1 = cosρ

(
0 ieiχ1 sinθ
0 eiχ2 cosθ

)
(4.13)

is a generalization of (4.10). Then the unitarity conditions impose constraints on the phase
anglesχ1, χ2, υ andζ via (4.2) and (4.3). Constraint(4.2c) is automatically satisfied, while
(4.3d) requiresχ1 ≡ χ2 =: χ (mod 2π). This means that the normalization constraints
are necessarily satisfied so the only remaining constraints are(4.2b) and(4.3b). These are
satisfied providedυ ≡ χ + ζ (mod 2π). Finally, up to unitary equivalence we may set
χ = 0, so the most general type II boundary condition is defined by

U =


eiζw′0 eiζw′+1
w−1 w0 w+1

w−1 w0
. . .

 (4.14)

wherew′i = wi(ρ, 0). Just as the type I boundary condition does, the type II boundary
condition has one phase degree of freedom.

5. Type III boundary conditions

The two types of inhomogeneities we have found reflect theρ ←→ θ duality evident in
the dispersion relation (6.2) discussed in [15]: The type I inhomogeneity has constantθ

and discontinuity inρ while the type II inhomogeneity has constantρ and discontinuity
in θ . Suppose we wish to change bothρ and θ . This is clearly possible using a type I
inhomogeneity to changeρ followed by a type II inhomogeneity to changeθ , provided the
discontinuities are sufficiently far apart that the constraints (3.2), (3.2), (4.2) and (4.3) do
not overlap. In fact, the discontinuities can be adjacent: it is straightforward to verify that
the evolution matrix

U :=



. . .

w′−1 w′0 w′+1
w′−1 ŵ0 ŵ+1

ŵ−1 w0 w+1

w−1 w0 w+1
. . .


(5.1)

is unitary forŵ−1 = w−1(ρ, θ) andŵ+1 = w+1(ρ, θ
′) as in (4.11) andŵ0 = ŵ0(ρ

′, θ ′, ρ).
The evolution matrix (5.1) describes a system in which the parametersρ ′ andθ ′ change to
ρ andθ across the inhomogeneity.

While (5.1) does not describe a new type of inhomogeneity as it is composed of a type I
and type II pair, our experience with boundary conditions in the previous sections suggest
that there may be an analogoustype III boundary condition which has extra phase degrees
of freedom. Suppose

U :=


w0 w+1

w−1 w0 w+1

w−1 w0
. . .

 (5.2)

where thewi are given by (1.3),w−1 is given by (4.13),w+1 is generalized from (4.11):

w+1 = cosρ

(
eiζ1 cosθ ′ 0
ieiζ2 sinθ ′ 0

)
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andw0 is the same as in (2.8) withθ replaced byθ ′ and also with additional phase factors:

w0 =
(

eiυ1 sinθ ′ −ieiυ2 cosθ sinρ
−ieiυ3 cosθ ′ eiυ4 sinθ sinρ

)
.

In this case, the unitarity conditions require

I = w0w
†
0+ w+1w

†
+1 (5.3a)

0= w0w
†
−1+ w+1w

†
0 (5.3b)

0= w+1w
†
−1 (5.3c)

I = w−1w
†
−1+ w0w

†
0+ w+1w

†
+1 (5.3d)

and

I = w†0w0+ w†−1w−1 (5.4a)

0= w†+1w0+ w†0w−1 (5.4b)

0= w†+1w−1 (5.4c)

I = w†+1w+1+ w†0w0+ w†−1w−1. (5.4d)

Constraints(5.3c) and (5.4c) are the same as(4.2c) and (4.3b), respectively, so they
have the same consequences as in the case of the type II boundary condition:(5.3c) is
satisfied automatically, while(5.4c) requiresχ1 ≡ χ2 =: χ (mod 2π ). Next, (5.3b)
implies υ2 ≡ χ + ζ1 (mod 2π ) and υ4 ≡ χ + ζ2 (mod 2π ). Constraint(5.4b) requires
υ3 − υ1 ≡ ζ2 − ζ1 =: δ (mod 2π ), whereupon the remaining (normalization) constraints in
(5.3) and (5.4) are automatically satisfied. Combining these results and settingυ := υ1,
ζ := ζ1 gives

w−1 = eiχ cosρ

(
0 i sinθ
0 cosθ

)
w+1 = eiζ cosρ

(
cosθ ′ 0

ieiδ sinθ ′ 0

)
w0 =

(
eiυ sinθ ′ −iei(χ+ζ ) cosθ ′ sinρ

−iei(υ+δ) cosθ ′ ei(χ+ζ+δ) sinθ ′ sinρ

)
for the weights in (5.2). We may setχ = 0 = δ by a unitary transformation, so the most
general type III boundary condition, up to unitary equivalence, is given byw−1 = w−1(ρ, θ),
w+1 = eiζw+1(ρ, θ

′), and

w0 =
(

eiυ sinθ ′ −ieiζ cosθ ′ sinρ
−ieiυ cosθ ′ eiζ sinθ ′ sinρ

)
.

As expected, in addition toθ ′ there are two phase angle degrees of freedom:υ andζ .

6. Plane waves near a boundary

The global evolution matrices (2.1), (4.14) and (5.2) describe unitary evolution of a single
particle in the presence of a boundary of type I, II, or III, respectively. Away from the
boundary the local evolution is still given by (1.1) and (1.3), so the one-particle plane
waves

ψ(k,ε)(x) = ψ(k,ε)(0)eikx (6.1)

we found in [15] still evolve, locally, by multiplication by e−iεω at each timestep, whereω
satisfies the dispersion relation

cosω = cosk cosθ cosρ + sinθ sinρ (6.2)



Quantum mechanics of lattice gas automata 2329

andε ∈ {±1}. In fact, any linear combination

ψ(k,ε)(x)+ Aψ(−k,ε)(x) (6.3)

evolves locally by phase multiplication as bothk and −k satisfy (6.2) with the same
frequencyω.

Consider the type I boundary condition atx = 0 and suppose there is an eigenfunction
ψ(ω)(x) of the form (6.3), which should be interpreted as a linear combination of incident
and reflected plane waves with relative amplitudeA, just as in the situation of scattering
off a potential step considered in [21]. Then

w0ψ
(ω)(0)+ w+1ψ

(ω)(1) = e−iωψ(ω)(0). (6.4)

The linear combination (6.3) is well defined forx < 0 and

w−1ψ
(ω)(−1)+ w0ψ

(ω)(0)+ w+1ψ
(ω)(+1) = e−iωψ(ω)(0) (6.5)

for anyA ∈ C, so subtracting (6.5) from (6.4) gives

(w0− w0)ψ
(ω)(0) = w−1ψ

(ω)(−1). (6.6)

Using (1.3), (2.8) and (6.3) in (6.6) we find

A = − (eiυ − sinρ)ψ(k,ε)

−1 (0)− ie−ik cosρψ(k,ε)

+1 (0)

(eiυ − sinρ)ψ(−k,ε)
−1 (0)− ieik cosρψ(−k,ε)

+1 (0)
(6.7)

where

ψ(k,ε)(0) :=
(

i sinρ cosθ − ie−ik cosρ sinθ
sinρ sinθ + eik cosρ cosθ − e−iεω

)
(6.8)

is the (unnormalized) eigenvector ofD(k) in [15]. That is, withA given by (6.7), the linear
combination (6.3) is an eigenfunction satisfying the type I boundary condition.

The more complicated type II and III boundary conditions require modifications to the
linear combination of plane waves (6.3) near the boundary. Consider the type II boundary
condition and suppose

ψ(ω)(x) := ψ(k,ε)(x)+ Aψ(−k,ε)(x) for x > 1 (6.9)

and

ψ
(ω)

−1 (0) := 0 (6.10)

where the latter condition follows from the discussion preceding (4.12). Atx = 1 the same
argument as in the type I boundary case gives

w−1ψ
(ω)(0) = w−1(ψ

(k,ε)(0)+ Aψ(−k,ε)(0)) (6.11)

which implies

ψ
(ω)

+1 (0) := ψ(k,ε)

+1 (0)+ Aψ(−k,ε)
+1 (0). (6.12)

Applying (4.14) to the eigenfunctionψ(ω)(x) at x = 0 gives

eiζw′0ψ
(ω)(0)+ eiζw′+1ψ

(ω)(1) = e−iωψ(ω)(0). (6.13)

Using the expressions forw′i with ρ ′ ≡ ρ, cosθ ′ = 0 and (6.9), (6.10) and (6.12) in (6.13)
we find

A = − (eiζ sinρ − e−iω)ψ
(k,ε)

+1 (0)+ iei(ζ+k) cosρψ(k,ε)

−1 (0)

(eiζ sinρ − e−iω)ψ
(−k,ε)
+1 (0)+ iei(ζ−k) cosρψ(−k,ε)

−1 (0)
. (6.14)
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Thus (6.9) withA given by (6.14), (6.10) and (6.12) define an eigenfunction satisfying the
type II boundary condition.

To find the eigenfunctions for the type III boundary condition, we still suppose they
satisfy (6.9), but not (6.10). Sincew−1 is the same as for the type II boundary, (6.11) still
implies (6.12). Now applying (5.2) to the eigenfunctionψ(ω)(x) at x = 0 gives

w0ψ
(ω)(0)+ w+1ψ

(ω)(1) = e−iωψ(ω)(0)

which comprises a pair of linear equations forψ(ω)

−1 (0) andA. These equations can be
solved to give the eigenfunctions for the type III boundary conditions, although we will not
need the explicit solution here.

7. Plane waves on finite lattices

With only one boundary, e.g.L = N as we were considering implicitly in the previous
section, the wavenumber can take any value in the interval−π < k 6 π and the
frequency/energy spectrum is continuous with rangeθ − ρ 6 |ω| 6 π − (θ + ρ) (assuming
06 ρ 6 θ 6 π/2) determined by the dispersion relation (6.2). On finite lattices, however,
the spectra are discrete and are determined by the two boundary conditions. Consider the
case of two type I boundary conditions on a lattice of cardinalityN . The weights in the
boundary condition atx = N − 1 are the parity transforms of those in (6.6):

P(w0− w0)P
−1ψ(ω)(N − 1) = Pw−1P

−1ψ(ω)(N)

where

P :=
(

0 1
1 0

)
.

This gives a second constraint onA:

A = −e−2ik(N−1) (eiυ − sinρ)ψ(k,ε)

+1 (0)− ieik cosρψ(k,ε)

−1 (0)

(eiυ − sinρ)ψ(−k,ε)
+1 (0)− ie−ik cosρ ψ(−k,ε)

−1 (0)
(7.1)

which must be consistent with (6.7). To see how this determines the discrete spectrum, let
υ = 0= ρ. Then (6.7) becomes

A = −e−2ik eik cosθ − e−iεω + sinθ

e−ik cosθ − e−iεω + sinθ
(7.2)

and (7.1) becomes

A = −e−2ik(N−1) eik cosθ − e−iεω − sinθ

e−ik cosθ − e−iεω − sinθ
. (7.3)

Setting the right-hand sides of (7.2) and (7.3) to be equal and using the dispersion relation
(6.2) to eliminateω, we find, after some algebra,

e−2i(N−2)k(sinθ − i sink cosθ) = sinθ + i sink cosθ. (7.4)

Supposingk to be real, the right-hand side of (7.4) is the complex conjugate of the
parenthesized expression on the left-hand side, which implies that

tan((N − 2)k)+ sink cotθ = 0. (7.5)

The left-hand side of (7.5) has poles atk = (n + 1
2)π/(N − 2), n ∈ Z, between each

pair of which there must be a root of the equation. Thus (7.5) hasN − 1 roots in
the interval 06 k 6 π , giving N − 1 distinct values for eigenfrequencies in the range
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Figure 1. The eigenfrequenciesω of U for a lattice
of sizeN = 16 withρ = 0, θ = π/4 and two type I
boundary conditions with the same parameterυ.

Figure 2. The same situation as in figure 1 but
with parametersρ = π/4, θ = π/3. In both cases
there are two eigenvalues withω ≈ 0 whenυ = 0
and two withω ≈ π whenυ = π .

θ − ρ 6 ω 6 π − θ − ρ (assuming 06 ρ 6 θ 6 π/2). However,U is a 2N × 2N matrix
so it must have 2N eigenvalues e−iω. Figures 1 and 2 show the results of computing the
eigenvalues ofU numerically forN = 16: the eigenfrequencies are plotted as functions of
the type I boundary parameterυ, set to the same value at each boundary. Note that while
most of the eigenfrequencies lie in the expected intervals, there are four which, over parts
of the range ofυ, do not.

To understand the origin of these unexpected eigenfrequencies, let us reconsider (7.4)
and suppose thatk has a nonzero imaginary part. Then for largeN and the correct sign of
k, the left-hand side of (7.4) becomes arbitrarily small. So, if there were such ak which
caused the right-hand side of (7.4) to vanish, it would provide an additional root. Solving

0= sinθ + 1
2(e

ik − e−ik) cosθ

we find

eik = − tanθ ± secθ. (7.6)
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Figure 3. The eigenfrequenciesω of U for a
lattice of sizeN = 16 with ρ = 0, θ = π/4
and two type II boundary conditions with the same
parameterζ .

The negative root in (7.6) makes the norm|e−ik| 6 1 for 0 6 θ 6 π/2; furthermore, it
satisfies the dispersion relation (6.2) withω = 0. Thus in theN → ∞ limit, 1 is an
eigenvalue ofU with multiplicity two. For finite N these extra eigenfrequencies split,
finely, and are only very close to 0. As we see in figures 1 and 2, asυ changes away
from 0, the splitting increases and the eigenfrequencies move into the range associated with
real wavenumbers. An analogous discussion explains the pair of eigenfrequencies nearπ at
υ = π . The eigenfunctions having these eigenfrequencies corresponding to wavenumbers
with nonzero imaginary part are, of course, not plane waves; rather, each describes the
state of a ‘low-energy’ particle which is ‘trapped’ at the boundaries, with exponentially
decreasing amplitude to be in the interior of the lattice.

For the case of two type II boundary conditions note that in reference to the discussion
following (4.12) the eigenfunctions of interest are those which have vanishing left- (right-)
moving amplitude at the left (right) boundary. Thus when|L| = N , there are 2N−2 relevant
eigenfunctions and eigenfrequencies. Figures 3 and 4 show the results of computing the
eigenvalues ofU numerically forN = 16: the eigenfrequencies are plotted as functions of
the type II boundary parameterζ , set to the same value at each boundary. As in the type I
boundary situation, most of the eigenfrequencies lie in the ranges corresponding to real
wavenumbers, although nearζ = π there are four which do not, and which are explained
by an analysis similar to that of the preceding paragraph.

Finally, consider the case of two type III boundary conditions, again with equal
parameter values. In this case there is a nonphase parameter which can be adjusted, namely
θ ′. Figure 5 shows the eigenfrequencies ofU as a function ofθ ′ for the rule defined by
ρ = 0, θ = π/4, with boundary parametersυ = 0= ζ . To separate the eigenvalues we have
computed them for a lattice of size onlyN = 4. Figure 6 is similar, but the rule parameters
are nowρ = π/4, θ = π/3. In this caseN = 8 and the two eigenfrequencies near 0 are
only finely split over the whole parameter range. Note that in each case there are actually six
eigenvalues corresponding to imaginary wavenumbers. Examination of the eigenfunctions
shows that the two with eigenfrequencies near 0 have amplitudes concentrated in the states
|1,−1〉 and|N−2,+1〉, while the four with eigenfrequencies closer to±π have amplitudes
concentrated atx = 0 andx = N − 1.
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Figure 4. The same situation as in figure 3 but
with parametersρ = π/4, θ = π/3. In both cases
there are two eigenvalues withω ≈ 0 and two with
ω ≈ π whenζ = π .

Figure 5. The eigenfrequenciesω of U for a
lattice of sizeN = 4 with ρ = 0, θ = π/4 and
two type III boundary conditions with the same
parameterθ ′ and both boundary phase angles 0.

8. Reflection and refraction of wavepackets

The physical meaning of the rule inhomogeneities we are considering is perhaps most clear
in wavepacket simulations. In [15] we defined binomial wavepackets with localized initial
position and particularized initial wavenumber. In each of the simulations of this section
the initial wavepacket is built from a plane wave (6.1) and (6.8) withk0 = π/4, is centred
at x = 16 and has width 32, on the lattice 06 x 6 63. The peak frequencyω0 and the
group velocity depend on the rule parametersρ andθ through the dispersion relation (6.2).

Let us first consider the reflection of such a wavepacket from the possible boundaries.
Figure 7 shows the evolution of the wavepacket with parametersρ = 0 andθ = π/4 in the
presence of type I boundary conditions withυ = 0. Reflection from type II and type III
boundaries is extremely similar: in each case the significant dispersion of the wavepacket at
the time of interaction with the wall results in a sequence of reflected (smaller) wavepackets.
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Figure 6. The same situation as in figure 5 but
with parametersρ = π/4, θ = π/3, andN = 8.
In both cases there are two eigenvalues withω ≈ 0
and four with|ω| ≈ π .

Figure 7. Evolution of thek0 = π/4 wavepacket with width 32 for rule parametersρ = 0,
θ = π/4. The boundaries are both of type I withυ = 0.

As we learned in [15], a ‘massless’ wavepacket disperses more slowly than a massive
one. In figure 8 we show the results of a simulation of this case:ρ = π/4 = θ and the
boundaries are both of type II withζ = 0. Reflection from type I and type III boundaries is
again similar: in each case the wavepacket reflects cleanly and suffers little more dispersion
than if the boundary had not been there.

Now let us consider the effect of rule inhomogenities on wavepacket evolution. Figure 9
shows the results of a simulation in which there is a type I inhomogeneity atx = 31: the
rule parameterθ is constant atπ/4 while ρ is 0 to the left, andπ/4 to the right, of
the inhomogeneity. There is both reflection and transmission of the wavepacket at the
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Figure 8. Evolution of the same wavepacket as in figure 7 for rule parametersρ = π/4 = θ .
The boundaries are both of type II withζ = 0.

Figure 9. Evolution of the same wavepacket as in the previous figures with rule parameters
θ = π/4 everywhere andρ = 0 to the left andρ = π/4 to the right of a type I inhomogeneity
at x = 31. Both boundaries are of type I withυ = 0.

inhomogeneity: the reflected wave disperses rapidly which causes an interaction with the
left boundary similar to that shown in figure 7 while the transmitted wavepacket has little
dispersion and evolves much as the wavepacket in figure 8.
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Figure 10. Evolution of the same wavepacket as in the previous figures with rule parameters
ρ = π/4 everywhere andθ = π/4 to the left andθ = π/3 to the right of a type II inhomogeneity
at x = 32. Both boundaries are of type II withζ = 0.

Next, let us consider the effect of a type II inhomogeneity which changes the value
of θ from π/4 to the left ofx = 32 to π/3 to the right. Figure 10 show the results of
a simulation withρ = π/4 everywhere and type II boundary conditions. To the left of
the inhomogeneity the rule is ‘massless’; this is evident in the negligible dispersion of the
wavepacket and its reflection off the inhomogeneity and then off the left boundary. With
higher probability, however, the particle is transmitted through the inhomogeneity. The
transmitted wavepacket evolves according to a ‘massive’ rule and begins to disperse slowly
so that reflection off the right boundary creates a small trailing wavepacket.

Recall from section 5 that the type I and type II inhomogeneities can be adjacent with
evolution matrix of the form (5.1). Figure 11 shows the results of a simulation of this
situation: to the left of the inhomogeneityρ = 0, θ = π/4 and to the rightρ = π/4,
θ = π/3. The boundary conditions are of type III withθ ′ = 0= υ = ζ . There is the same
concentration of probability at the inhomogeneity that occurs with the type I inhomogeneity
shown in figure 9, together with less transmission and more dispersion to the right than
with the type II inhomogeneity shown in figure 10.

Finally, recall theρ ←→ θ duality displayed by the dispersion relation (6.2). Figure 12
shows the results of a simulation in the presence of a type III inhomogeneity constructed to
convert the rule parametersρ = π/3, θ = π/4 on the left to the dual pairρ = π/4, θ = π/3
on the right. The reflected and transmitted wavepackets have more even probabilities than
in figure 11 and evolve with the opposite group velocities. There is some asymmetry, most
evident at the end of the simulation upon reflection from the boundaries; it is due to the
asymmetry of the combined type I/type II inhomogeneity as well as of the initial condition.
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Figure 11. Evolution of the same wavepacket as in the previous figures with rule parameters
ρ = 0, θ = π/4 to the left andρ = π/4, θ = π/3 to the right of a combined type I/type II
inhomogeneity atx = {31, 32}. Both boundaries are of type III withθ = 0= υ = ζ .

9. Discussion

We have found dual inhomogeneities consistent with unitary global evolution of the general
one particle rule (1.1)–(1.3): type I implements a change inρ while type II implements a
change inθ ; adjacent type I/type II inhomogeneities implement changes in bothρ and θ .
Each of these three possibilities has a corresponding boundary condition characterized by
additional parameters. Despite this apparent variety of possibilities, the unitarity constraint
is quite restrictive: besides the phase implementation of an inhomogeneous potential [17, 15]
and some degenerate cases, these are the only possible local inhomogeneities up to unitary
equivalence.

A natural question to ask is how these rule inhomogeneities extend to the complete
multiparticle rule set. Even the homogeneous rules for the general one-dimensional QLGA
whose one-particle subspace we have been investigating are quite complicated as there are
effectively two, three and four particle interactions. In [11], however, we found the only
particle preserving generalization of the rules (1.1)–(1.3) withρ = 0 (i.e. with particles
of unit speed). In this case no more than two particles can advect simultaneously to a
given lattice site, whereupon they scatter in opposite directions with amplitude eiφ , φ ∈ R.
In fact, the global evolution remains unitary if the constant phase angleφ considered in
[22, 11, 17, 21] becomes any function of the lattice sitesφ(x). That is, the two-particle
scattering amplitude can be any inhomogeneous function on the lattice, independently of
the one-particle ‘scattering’ amplitudes—and this independent inhomogeneity extends to
the values ofφ(x) at the boundaries. (Note that even in the type I and type III boundary
conditions wherew0 6= 0, and hence a particle scattering off the boundary can have speed 0,
no more than two particles can advect to the same lattice site.) The question of determining
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Figure 12. Evolution of the same wavepacket as in the previous figures with dual rule parameters
ρ = π/3, θ = π/4 to the left andρ = π/4, θ = π/3 to the right of a combined type I/type II
inhomogeneity atx = {31, 32}. Both boundaries are of type III withθ = 0= υ = ζ .

which boundary conditions are consistent with integrability of the model,via the Bethe
ansatz [23, 24] as we began studying in [21] or by generalization of the Yang–Baxter
equation [24] as has been used in closely related models [25], is of fundamental interest.

For the purposes of quantum computation with QLGA, we conclude by noting that we
have explicitly formulated the possible local inhomogeneities in the one-dimensional unit
speed model. Extending these multiparticle results to multiple speeds and higher dimensions
seems likely to be algebraically more complicated but conceptually similar—single-particle
single-speed models with inhomogeneities have been constructed in two dimensions
[26, 27, 17]. More interesting is the question of how to exploit such inhomogeneities to
effect specific quantum computational tasks more efficiently than by simply implementing
a quantum version of reversible billiard computing [13, 20] using a homogeneous rule. The
most natural use of QLGA may be to simulate other quantum physical systems; designing
an inhomogeneous QLGA to be an efficient universal quantum computer may consequently
be difficult. A reasonable intermediate aim would be to solve specific problems particularly
well suited to this architecture. Although neither implements a quantum algorithm, Squier
and Steiglitz’s particle model for parallel arithmetic [28] and Benjamin and Johnson’s recent
proposal for an inhomogeneous nanoscale cellular automaton adder [29] may provide useful
points of departure.
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Dürr C and Santha M 1996 A decision procedure for unitary linear quantum cellular automataProc. 37th
Annual Symp. on Foundations of Computer Science (Burlington, VT, 14–16 October)(Los Alamitos, CA:
IEEE Computer Society Press) pp 38–45

Meyer D A 1996 Unitarity in one dimensional nonlinear quantum cellular automataPreprint quant-
ph/9605023

van Dam W 1996 A universal quantum cellular automatonPreprint
[11] Meyer D A 1996 From quantum cellular automata to quantum lattice gasesJ. Stat. Phys.85 551–74
[12] Watrous J 1995 On one-dimensional quantum cellular automataProc. 36th Annual Symp. on Foundations of

Computer Science (Milwaukee, WI, 23–25 October)(Los Alamitos, CA: IEEE Computer Society Press)
pp 528–37

[13] Margolus N 1984 Physics-like models of computationPhysica10D 81–95
[14] Toffoli T 1984 Cellular automata as an alternative to (rather than an approximation of) differential equations

in modeling physicsPhysica10D 117–27
Hasslacher B 1988 Discrete fluidsLos Alamos Sci.15 175–200
Hasslacher B 1988 Discrete fluidsLos Alamos Sci.15 211–17

[15] Meyer D A 1997 Quantum mechanics of lattice gas automata: One-particle plane waves and potentialsPhys.
Rev.E 55 5261–9

[16] Boghosian B M and Taylor W IV 1997 Simulating quantum mechanics on a quantum computerPreprint
BU-CCS-970103, PUPT-1678, quant-ph/9701019

[17] Boghosian B M and Taylor W IV 1998 Quantum lattice-gas model for the many-particle Schrödinger equation
in d dimensionsPhys. Rev.E 57 54–66

[18] Feynman R P 1982 Simulating physics with computersInt. J. Theor. Phys.21 467–88
[19] Hilli s W D 1982 New computer architectures and their relationship to physics or why computer science is

no goodInt. J. Theor. Phys.21 255–62
Margolus N 1990 Parallel quantum computationComplexity, Entropy, and the Physics of Information (Proc.

of the SFI Workshop, Santa Fe, NM, 29 May–10 June 1989) (SFI Studies in the Sciences of Complexity
VIII) ed W H Zurek (Redwood City, CA: Addison-Wesley) pp 273–87

Hasslacher B 1993 Parallel billiards and monster systemsA New Era in Computationed N Metropolis and
G-C Rota (Cambridge: MIT) pp 53–65



2340 D A Meyer

Mainieri R 1993 Design constraints for nanometer scale quantum computersPreprint LA-UR 93-4333, cond-
mat/9410109

[20] Biafore M 1994 Cellular automata for nanometer-scale computationPhysica70D 415–33
[21] Meyer D A 1997 Quantum lattice gases and their invariantsInt. J. Mod. Phys.C 8 717–35
[22] Destri C and de Vega H J 1987 Light-cone lattice approach to fermionic theories in 2D. The massive Thirring

modelNucl. Phys.B 290 363–91
[23] Bethe H A 1931 Zur theorie der metalle. I. Eigenwerte und eigenfunktionen der linearen atomketteZ. Phys.

71 205–26
[24] Baxter R J 1982Exactly Solved Models in Statistical Mechanics(New York: Academic) and references

therein
[25] Cherednik I V 1984 Factorizing particles on a half-line and root systemsTheor. Math. Phys.61 977–83

Sklyanin E K 1988 Boundary conditions for integrable quantum systemsJ. Phys. A: Math. Gen.21 2375–89
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