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Abstract. We continue our analysis of the physics of quantum lattice gas automata
(QLGA). Previous work has been restricted to periodic or infinite lattices; simulation of
more realistic physical situations requires finite sizes and nonperiodic boundary conditions.
Furthermore, envisioning a QLGA as a nanoscale computer architecture motivates consideration
of inhomogeneities in the ‘substrate’; this translates into inhomogeneities in the local evolution
rules. Concentrating on the one-particle sector of the model, we determine the various boundary
conditions and rule inhomogeneities which are consistent with unitary global evolution. We
analyse the reflection of plane waves from boundaries, simulate wavepacket refraction across
inhomogeneities, and conclude by discussing the extension of these results to multiple particles.

1. Introduction

Shor’s discovery of a polynomial time quantum algorithm for factoring [1] stimulated a
surge of interest in quantum computation (see the extensive bibliographies of [2]). Most
work has concentrated on serial algorithms—sequences of unitary, few gpleitations—
the gquantum version of serial Boolean logic [4]. Single quantum logic gates have been
realized experimentally in ion traps [5] and quantum electrodynamics cavities [6], and short
sequences of such unitary operations have recently been implemented with nuclear magnetic
resonance [7]. All of these systems, as well as proposed solid-state architectures such as
arrays of quantum dots [8], exist physically éh > 0 spatial dimensions and therefore
naturally evolve inparallel. Imposing a single-gate operation restricts the rest of the qubits
to be invariant, i.e. they must evolve by the identity operator; at the opposite extreme all
the qubits would evolve according to the same, local (few qubit) operation during a single
timestep. A quantum computer evolving according to such a homogeneous, local, unitary
rule would have the quantum version of the massively parallel architecture possessed, for
example, by Margolus’ CAM machines [9].

The simplest algorithms which would run on such an architecture are quantum cellular
automata (QCA) [10] or quantum lattice gas automata (QLGA) [11]. Eved ig 1
spatial dimensions QCA are capable of universal computation [12], and the existence of
the universal reversible billiard ball computer [13] implies that QLGA are also, at least in
d > 2 spatial dimensions. Just as classical LGA are most effectively deployed to simulate

1 E-mail address: dmeyer@chonji.ucsd.edu

i A qubit [3] is a quantum system whose state is a vector in a two-dimensional Hilbert space, e.g.%a spin-
particle fixed in space.
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physical systems such as fluid flow [14], however, QLGA most naturally simulate quantum
physical systems [11, 15, 16]: with the simplest homogeneous evolution rule, one-particle
QLGA simulate the constant potential Dirac [11] or Sidinger [17] equation, depending

on the relative scaling of the lattice spacing and timestep.

An earlier paper [15] initiated a project to analyse which physical processes QLGA can
simulate effectively. In that paper and in this one we concentrate on the most general model
for a single quantum particle with speed no more than 1 in lattice units, moving on a lattice
in one dimension. The amplitudes for the particle to be (left, right) moving at a lattice point
x € L are combined into a two-component complex vegtdr, x) := (Y_1(¢, x), ¥41(z, x))
which evolves as

Y+ 1x)=w_1¥(t,x —1) +we(t, x) + wry(t, x + 1). (1.2)

Here the weightav; € M,(C) are 2x 2 complex matrices constrained by the requirement
that the global evolution matrix

U .= w_1 wo Wy (12)
w-1 Wo Wi1

be unitary. We showed in [11] that the most general parity invariant solution, up to unitary
equivalence and an overall phase, is given by
_ cos 0 isind _ cosp [ €O 0
W1 =805 g cog w1 =090 {ising 0
sing  —icos#
—icos®  sing

1.3)
wo = Sinp (

Describing the evolution by (1.1)—(1.3) assumes that the system is homogeneous in space
and that the latticd is isomorphic either to the integeFsor to a periodic quotient thereof,
sayZy. To simulate physical systems [18] more generally, the model should be extended
to allow for finite size and nonperiodic boundary conditions. Furthermore, envisioning a
QLGA as a nanoscale qguantum computer architecture [19, 20, 2] motivates consideration of
inhomogeneities in the ‘substrate’, possibly as a step towards implementing logical gates
[4] and away from simply simulating quantum physical systems. In [15] we showed how to
introduce an inhomogeneous potential in the model; the purpose of this paper is to investigate
more general inhomogeneities in the evolution rule, including boundary conditions.

In section 2 we consider the simplest possible modification of the evolution rule (1.1) for
a boundary ak = 0, say, settingv_; there to 0 and allowing the weighi, to differ from
the constaniv, of the rest of the lattice. The resulting type | boundary condition suggests
the form for a corresponding type | inhomogeneity where the global evolution matrix (1.2)
is changed by replacing one of thg blocks with a different matrixvg, and allowing the
weightsw; to differ on either side of the antidiagonal through it. In section 3 we show that
such an inhomogeneous rule is unitary provideid the same for all the weights.

There is a dual inhomogeneity across whicis constant buf may differ; we describe
this type Il inhomogeneity in section 4 and find the corresponding boundary condition. In
section 5 we observe that the type | and Il inhomogeneities can occur together, changing
bothp andf. The corresponding type Il boundary condition has an extra degree of freedom,
justifying distinct classification.
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In section 6 we show how to find the eigenfunctionsiofin the presence of these
boundaries. In each case the result is a linear combination of left- and right-moving plane
waves with the same frequency. On a finite lattice with two boundaries, the spectrum of
U is discrete. In section 7 we investigate the discrete spectra for pairs of each type of
boundary condition, determining how they depend on the boundary parameters and what
the consequences are for the eigenfunctions.

Simulations of wavepackets on lattices with boundary conditions and in the presence of
inhomogeneities confirms that the physical consequences of these inhomogeneous evolution
rules are as expected. We show some results in section 8.

We conclude in section 9 with a summary and a discussion of the extension of this work
to the multiple-particle sector of the Hilbert space.

2. Type | boundary conditions

If our system is neither infinite nor periodic, we must model it on a bounded lattice, e.g.
L ={x eZ|0< x <N —1}. Since there is no lattice point to the left of O, it is clear that
the evolution rule (1.1) must be adjusted there (as it must also be at the right boundary).
Making the minimal change in the model, let us suppose that the global evolution matrix
takes the form

wo W41
w-_1 wo W1
U= w1 wo (2.1)

where thew; are given by (1.3). Thus a left-moving particle at= 1 has the same
amplitudes (given byw,;) to advect tox = 0 and scatter to the left or right, and a right-
moving particle atx = 0 has the same amplitudes (given by ;) to advect tox = 1
and scatter to the left or right, as each would, were there no boundary. (The analogous
form for the evolution rule at a right boundary is obtained by a parity transformation.) The
only differences we allow for thisype | boundary condition are in the amplitudes for the
evolution of a left-moving particle at = 0 and for the scattering of a right-moving patrticle
atx = 0 which remains there during the advection step; these are givémn by

The unitarity conditiond/U' = I = UTU impose the following constraints ano:

I= wowg + w+1w11 (2.2a)

0=wow , + wywd (2.20)
and

I = wgwo + wT_lw_l (2.3)

0=w, o+ whw_1. (2.30)
Let

m= (3 ) @9

Then, assuming cgs# 0, (2.2b) implies

y2 = —icosé sinp

. . (2.5)
ya4 = SIN@ sinp
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while (2.3b) implies

y1 = iystand. (2.6)
The normalization conditioi2.24) requires

y3 = —ie'V cosd (2.7)
for some arbitrary phase anglee R. Combining (2.4)—(2.7), we find

__( €sing  —icosfsinp

wo= (—ie‘” cosd  sindsinp ) (2:8)

which satisfies all the constraints (2.2) and (2.3).

The type | boundary condition defined by (2.1) and (2.8) gives the same amplitudes as
(1.3) for the scattering of a right-moving particle at= 0 which remains there; only the
amplitudes for the scattering of a left-moving particlexat O differ from the no boundary
situation. The latter depend on a single real parameiteharacterizing the boundary. Note
also that these amplitudes do not vanish in the decoupled £asé (whencewy = 0).

That is, wg # 0 is required to define unitary boundary conditions even when the particle
has speed 1 everywhere else in the lattice.

3. Type | inhomogeneities

The boundary weightvy defined by (2.8) has the same form as the weightdefined in

(1.3), except that the factor of sinin the first column is replaced by'e Thus we can
interpret the evolution rule defined by (2.1) and (2.8) as describing a system where the
coupling constanp satisfies cop = 0 at and to the left ofc = 0. This would make

w_1 = 0 = w4, So there would be no advection to the leftxof= 0. This suggests that

the wo we found in section 2 may be a special case of an inhomogeneity in the coupling
constantp. So let us consider a type | evolution rule inhomogeneity of the form:

/ ! I
Ww_, Wy Wi
U= w, wo wq 3.1)

W-1 Wo W41

where thew; =: w; (p, ) are defined by (1.3) ana@; := w;(p’, 8').
Now the unitarity conditions impose constraints on the relation betweewtlaad the
w; as well as on the inhomogeneity matuix:

0=w,w, (3.23)
0= w/_lwg + ﬁJowil (3.2)
I=w w4+ dowd + wigw!, (3.20)
0= tow' ; + wysw (3.2d)
and
0=w' wy (3.3)
0= wgw;l + w/jlli}o (3.3%)
I=wl w4+ b +w jw_y (3.%)

0= w! o+ whw_1. (3.3d)



Quantum mechanics of lattice gas automata 2325

Constraint(3.2a) is automatically satisfied but, again assuming thateces 0 # cosp’,
(3.3a) requires si¥ —6’) = 0, so we set’ = 6. Using the form (2.4) forvg, we observe
that the constraint$3.24) and (3.3d) are the same a&.2bh) and (2.3b), so they; must
satisfy (2.5) and (2.6). Constrai.2b) requires that
y1 = sin@ sinp’
y3 = —icosé sinp’
which is consistent with (2.6), just as (2.5) is wiiB3b). Combining (2.4), (2.5) and (3.4)
we find

(3.4)

(3.5)

N . sing sinp’ —icoso sin
o = wo(p', 0, p) = ( p ,o)

—icos@ sinp’  sin@ sinp

which also satisfies the remaining (normalization) constraints in (3.2) and (3.3).

The arbitrary phase degree of freedom in the type | boundary condition is not present in
(3.5), but as anticipated, this type | inhomogeneity describes a change in the coupling
constantp, the massfd being held fixed across the inhomogeneity. The locus of the
inhomogeneity is quite precise: a left-moving particle fram= 0 obeys the ‘primed’
rules, while a right-moving particle obeys the ‘unprimed’ ones.

4. Type Il inhomogeneities and boundary conditions

The form (3.1) of the type | inhomogeneity partitions the evolution mdfrixto two pieces
across an antidiagonal through thig block (inside the block the partition runs between
the two columns). We might also consider an inhomogeneity which partitibracross
an antidiagonal through a pair af_; and w,; blocks. Such aype Il evolution rule
inhomogeneity has the form:

(4.1)

w-1 Wo W41

where againw; = w;(p,8) and w; = w;(p’, 0’) are defined by (1.3) but witla priori
different parameters.

The unitarity conditions/U' = I = UTU impose even more constraints in this more
complicated situation:

I=w w +wjwg + b, (4.29)

0= wyid , + bysw (4.20)

0= 121+1wT_1 (4.)

0=b_qw, (4.2d)

=1 ) 4+ wowd +wiqw!, (4.2
and

I=00 b+ whwo +w!jw_y (4.39)

0= wp+ whh_1 (4.30)
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0=w! (4.30)
0=wh by (4.3d)
I=wlw,, +wjwy+d i g (4.3)

Suppose the inhomogeneity matrices have the most general forms:

~ [ *1 x2 ~ [ %1 22
W_g = (x3 x4> and Wy = <Z3 Z4> . 4.4

Then, assuming cgs # 0, constraint(4.2¢) requiresz; = 0 = z4. Similarly, assuming
cosp’ # 0, constraint(4.2d) requiresx; = 0 = x3. Thus the inhomogeneity matrices have
the same advection/scattering interpretation as in the homogeneous situation.

Now constraintg4.3c) and (4.3d) imply that

73 =iz  tand’ (4.5)
and

X2 = ixgtand (4.6)
respectively. Imposing the normalization constraih®a) we find that

71 = € cosp’ cosh'. 4.7

Then imposing the normalization constrai@.3a) implies co$p = cos p’, so we set
o' = p. Combining (4.4), (4.5) and (4.7) gives

W1 = 5w (4.8)
Similarly, imposing the normalization constraif®.2¢) we find that

x4 = €% cosp cosh. (4.9)
Combining (4.4), (4.6) and (4.9) gives

W_q = e w_ (4.10)

which also satisfies the last normalization constrédiie). The two remaining constraints
(4.2b) and (4.3b) require only thaty = —¢ (mod 2r), which can thence be set to 0 by a
unitary transformation. Thus (4.8) and (4.10) become

121_1 = w_1(,0, 0) and 12)+1 = w+1(,0, 9,). (4.11)

Just as the type | inhomogeneity described by (3.1) and (3.5) specializes to a type |
boundary condition described by (2.1) and (2.8) whenotes 0 so that there is no advection
to the left ofx = 0, the type Il inhomogeneity described by (4.1) and (4.11) specializes
to a boundary condition when cés= 0. In this situation, when a left-moving particle at
x =1 advects toc = 0O it scatters to the right, while a right-moving particlexat 0 which
remains atv = O also scatters to the right—a particle initiallyxat- O or atx = 0 and right
moving has no amplitude to be at< 0 or atx = 0 and left moving at any subsequent
timestep.

This is a special case of the type Il boundary condition which we expect to be
characterized by nontrivial phases, just as is the type | boundary condition. The ‘primed’
parameters satisfy’ = p and co®’ = 0, so generalizing the type Il inhomogeneity by
multiplicative phases suggests

evwy €w,
w_1 wo W1

U= w1 wo (4.12)
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where
Ty = COSp (0 g sin@)
0 €*2cosp
is a generalization of (4.10). Then the unitarity conditions impose constraints on the phase
anglesyi, x2, v and¢ via (4.2) and (4.3). Constrairi#h.2c) is automatically satisfied, while
(4.3d) requiresy; = x» =: x (mod 2r). This means that the normalization constraints
are necessarily satisfied so the only remaining constrainté4aéte) and (4.3b). These are
satisfied provided» = x +¢ (mod 2r). Finally, up to unitary equivalence we may set
x = 0, so the most general type Il boundary condition is defined by
e wy é‘“wﬁrl
w-1 Wo W41
U= w_1q wo

(4.13)

(4.14)

wherew! = w;(p,0). Just as the type | boundary condition does, the type Il boundary
condition has one phase degree of freedom.

5. Type Il boundary conditions

The two types of inhomogeneities we have found reflect¢he— 6 duality evident in

the dispersion relation (6.2) discussed in [15]: The type | inhomogeneity has cofistant
and discontinuity inp while the type Il inhomogeneity has constantand discontinuity

in 6. Suppose we wish to change bagthand 6. This is clearly possible using a type |
inhomogeneity to change followed by a type Il inhomogeneity to change provided the
discontinuities are sufficiently far apart that the constraints (3.2), (3.2), (4.2) and (4.3) do
not overlap. In fact, the discontinuities can be adjacent: it is straightforward to verify that
the evolution matrix

U= Wer oo Wit (5.1)

is unitary forw_; = w_1(p, 0) andw,; = wy1(p, 0’) as in (4.11) andbg = wo(p’, &', p).
The evolution matrix (5.1) describes a system in which the parametensdé’ change to
p andf across the inhomogeneity.

While (5.1) does not describe a new type of inhomogeneity as it is composed of a type |
and type Il pair, our experience with boundary conditions in the previous sections suggest
that there may be an analogaiype 11l boundary condition which has extra phase degrees
of freedom. Suppose

wo Wi
_ W_1 Wo Wyg
U= Wy wg (5.2)

where thew; are given by (1.3)w_; is given by (4.13)w.; is generalized from (4.11):
_ gfrcosy’ 0
W1 = COSP | jeicz sing’ 0
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andwy is the same as in (2.8) with replaced by’ and also with additional phase factors:
—— éusing’  —ie"2cosd sinp
0=\ —iescosy’  €vsingsinp
In this case, the unitarity conditions require

I = Wowy +WW 4 (5.3a)
0=wow' , + Wyaw) (5.30)
0= EHwT_l (5.%)
I= w,lwil + wowg + w+1wil (5.3d)
and
[ =Whwo+wW w4 (5.40)
0=, o+ whiw_1 (5.40)
0=wh,w 4 (5.4)
I = wilwﬂ + wgwo + wT_lw_l. (5.4d)

Constraints(5.3c) and (5.4¢) are the same a¢4.2¢) and (4.3b), respectively, so they
have the same consequences as in the case of the type Il boundary condt®mn:is
satisfied automatically, whil€5.4c) requiresy; = x» =: x (mod 2r). Next, (5.3b)
implies v, = x + ¢ (mod 2r) andvs = x + &2 (mod 2r). Constraint(5.4b) requires
vz — vy = o — &1 =: 8 (mod 2r), whereupon the remaining (normalization) constraints in
(5.3) and (5.4) are automatically satisfied. Combining these results and settiagu;,
¢ = {1 gives
_ i 0 isind
— aX
w_1 = €% cosp (0 cose)
_ v sing’ —ie**9 cosp’ sinp
Wo =\ _jgw+d cosg’ e+ sing’ sinp
for the weights in (5.2). We may sgt = 0 = § by a unitary transformation, so the most
general type lll boundary condition, up to unitary equivalence, is givem by= w_1(p, ),
E+1 = eI{ULH]_(p, 0/), and
— _( €Using’ —ie“ cos’sinp
Wo =1\ _igvcosy’ € sind’ sinp

cosy’ 0>

w1 = € cosp (ie“S sing’ 0

As expected, in addition t8’ there are two phase angle degrees of freedorand¢.

6. Plane waves near a boundary

The global evolution matrices (2.1), (4.14) and (5.2) describe unitary evolution of a single
particle in the presence of a boundary of type I, II, or Ill, respectively. Away from the

boundary the local evolution is still given by (1.1) and (1.3), so the one-particle plane
waves

P ®O (x) = y*O (0)dhr (6.1)

we found in [15] still evolve, locally, by multiplication by &® at each timestep, whete
satisfies the dispersion relation

COSw = CcOosk cOsH CoSp + Siné sinp (6.2)



Quantum mechanics of lattice gas automata 2329

ande € {£1}. In fact, any linear combination
YO0 + Ay TR (6.3)

evolves locally by phase multiplication as bothand —k satisfy (6.2) with the same
frequencyw.

Consider the type | boundary conditionat= 0 and suppose there is an eigenfunction
Y@ (x) of the form (6.3), which should be interpreted as a linear combination of incident
and reflected plane waves with relative amplitutlejust as in the situation of scattering
off a potential step considered in [21]. Then

oy (0) + wiay (1) = ey (0). (6.4)
The linear combination (6.3) is well defined for< 0 and

w1y (=1) + woy “(0) + w1y @ (+1) = ey (0) (6.5)
for any A € C, so subtracting (6.5) from (6.4) gives

(Wo — wo) ¥ (0) = w_1y“ (-1). (6.6)

Using (1.3), (2.8) and (6.3) in (6.6) we find

(€ —sinp)y;”(0) — ie~* cospy 57 (0)

A=- 6.7
(@@ —sinp)y 1“9 (0) — ieik cospy {7 (0) (6.7)
where
®e ey . ( isinpcost —ie 'k cosp sing
veO= (Sinp sing + €* cosp cosy — e (6.8)

is the (unnormalized) eigenvector Bf(k) in [15]. That is, withA given by (6.7), the linear
combination (6.3) is an eigenfunction satisfying the type | boundary condition.

The more complicated type Il and lll boundary conditions require modifications to the
linear combination of plane waves (6.3) near the boundary. Consider the type Il boundary
condition and suppose

U@ x) = p*Ox) + Ay TR (x) forx>1 (6.9)
and
0 :=0 (6.10)

where the latter condition follows from the discussion preceding (4.12) Atl the same
argument as in the type | boundary case gives

W1y (0) = w_a (Y “(0) + Ay T(0)) (6.11)
which implies

¥ 00 = v 490 + Ay 0). (6.12)
Applying (4.14) to the eigenfunctiogt© (x) at x = 0 gives

e woy @ (0) + € w1y (1) = ey @(0). (6.13)

Using the expressions fav; with p’ = p, cos®’ = 0 and (6.9), (6.10) and (6.12) in (6.13)
we find
&¢ sinp — ey %9 0) - ie¢+0 cospy %9 (0
A= ( ' P . )1;(0:{1)()"‘.‘ plﬂ:k()) . (6.14)
(€¢sinp —e*)y " (0) +iel¢—h cospy " (0)
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Thus (6.9) withA given by (6.14), (6.10) and (6.12) define an eigenfunction satisfying the
type Il boundary condition.

To find the eigenfunctions for the type Il boundary condition, we still suppose they
satisfy (6.9), but not (6.10). Sin@e_; is the same as for the type Il boundary, (6.11) still
implies (6.12). Now applying (5.2) to the eigenfunctigi”’ (x) atx = 0 gives

Woy (0) + W19 (1) = ey (0)
which comprises a pair of linear equations fg(zf“f(O) and A. These equations can be

solved to give the eigenfunctions for the type Il boundary conditions, although we will not
need the explicit solution here.

7. Plane waves on finite lattices

With only one boundary, e.gL = N as we were considering implicitly in the previous
section, the wavenumber can take any value in the interval < & < 7 and the
frequency/energy spectrum is continuous with raéigep < |o| < 7 — (8 + p) (assuming

0 < p <0 < 7/2) determined by the dispersion relation (6.2). On finite lattices, however,
the spectra are discrete and are determined by the two boundary conditions. Consider the
case of two type | boundary conditions on a lattice of cardinality The weights in the
boundary condition at = N — 1 are the parity transforms of those in (6.6):

P(wo — wo) Py (N — 1) = Pw_1 P (N)

. (0 1
Pe= <1 o) :
This gives a second constraint an
A gz (€ = sinp)y 7 — ie cospy i 0)
(€ —sinp)y 9 (0) — ie cosp ¥ 79 (0)

which must be consistent with (6.7). To see how this determines the discrete spectrum, let
v =0= p. Then (6.7) becomes

where

(7.1)

o2 ék cosy — e + sing

A=— . . - 7.2
e cosh — e i@ + sing (7.2)
and (7.1) becomes
ik —iew i
A — _g2kN-D) €“cosd — e —sing (7.3)

ek cosh — elew —sing
Setting the right-hand sides of (7.2) and (7.3) to be equal and using the dispersion relation
(6.2) to eliminatew, we find, after some algebra,
e 2(V=2k(sing — isink cosd) = sind + isink cosh. (7.4)
Supposingk to be real, the right-hand side of (7.4) is the complex conjugate of the
parenthesized expression on the left-hand side, which implies that
tan((N — 2)k) + sink cotd = 0. (7.5)

The left-hand side of (7.5) has poles lat= (n + %)n/(N —2), n € Z, between each
pair of which there must be a root of the equation. Thus (7.5) NMas 1 roots in
the interval 0< k < m, giving N — 1 distinct values for eigenfrequencies in the range
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0
T
f
———————
—————
_——————
2 ————
e
———— —
———
v
-7 —7/2 /2 T
//
//—/
ﬁ;
//_/—:
S H S ————
_————
1
Figure 1. The eigenfrequencies of U for a lattice
of sizeN = 16 withp = 0,6 = n/4 and two type |
- boundary conditions with the same parameter
0
T
/2
———————
/F/;
/,_/—;
e ————
= —a/2 7 B
e e ————————]
1
1
——
—7/2
Figure 2. The same situation as in figure 1 but
with parameterg = /4, 6 = /3. In both cases
there are two eigenvalues with~ 0 whenv =0
- and two withw ~ 7 whenv = 7.

0—p<w<m—0—p(assuming &K p < 0 < /2). However,U is a 2N x 2N matrix
so it must have ® eigenvalues €. Figures 1 and 2 show the results of computing the
eigenvalues ot/ numerically for N = 16: the eigenfrequencies are plotted as functions of
the type | boundary parameter set to the same value at each boundary. Note that while
most of the eigenfrequencies lie in the expected intervals, there are four which, over parts
of the range ofv, do not.

To understand the origin of these unexpected eigenfrequencies, let us reconsider (7.4)
and suppose thdt has a nonzero imaginary part. Then for latgeand the correct sign of
k, the left-hand side of (7.4) becomes arbitrarily small. So, if there were sucklaich
caused the right-hand side of (7.4) to vanish, it would provide an additional root. Solving

0 = sind + 3(¢* — e™*) cosy
we find
ek = —tand + sed. (7.6)
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_— Figure 3. The eigenfrequencies of U for a
lattice of sizeN = 16 with p = 0, 6 = =n/4
and two type Il boundary conditions with the same
- parameter.

The negative root in (7.6) makes the notat*| < 1 for 0 < 6 < 7/2; furthermore, it
satisfies the dispersion relation (6.2) with= 0. Thus in theN — oo limit, 1 is an
eigenvalue ofU with multiplicity two. For finite N these extra eigenfrequencies split,
finely, and are only very close to 0. As we see in figures 1 and 2; akanges away

from O, the splitting increases and the eigenfrequencies move into the range associated with
real wavenumbers. An analogous discussion explains the pair of eigenfrequencigsatear

v = m. The eigenfunctions having these eigenfrequencies corresponding to wavenumbers
with nonzero imaginary part are, of course, not plane waves; rather, each describes the
state of a ‘low-energy’ particle which is ‘trapped’ at the boundaries, with exponentially
decreasing amplitude to be in the interior of the lattice.

For the case of two type Il boundary conditions note that in reference to the discussion
following (4.12) the eigenfunctions of interest are those which have vanishing left- (right-)
moving amplitude at the left (right) boundary. Thus whéh= N, there are & —2 relevant
eigenfunctions and eigenfrequencies. Figures 3 and 4 show the results of computing the
eigenvalues oV numerically forN = 16: the eigenfrequencies are plotted as functions of
the type Il boundary parameter set to the same value at each boundary. As in the type |
boundary situation, most of the eigenfrequencies lie in the ranges corresponding to real
wavenumbers, although near= = there are four which do not, and which are explained
by an analysis similar to that of the preceding paragraph.

Finally, consider the case of two type Ill boundary conditions, again with equal
parameter values. In this case there is a nonphase parameter which can be adjusted, namely
0’. Figure 5 shows the eigenfrequencieslbfas a function of9’ for the rule defined by
o = 0,60 = /4, with boundary parametets= 0 = ¢. To separate the eigenvalues we have
computed them for a lattice of size only = 4. Figure 6 is similar, but the rule parameters
are nowp = /4,6 = /3. In this caseN = 8 and the two eigenfrequencies near O are
only finely split over the whole parameter range. Note that in each case there are actually six
eigenvalues corresponding to imaginary wavenumbers. Examination of the eigenfunctions
shows that the two with eigenfrequencies near 0 have amplitudes concentrated in the states
|1, —1) and|N —2, +1), while the four with eigenfrequencies closertar have amplitudes
concentrated at =0 andx = N — 1.
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8. Reflection and refraction of wavepackets

The physical meaning of the rule inhomogeneities we are considering is perhaps most clear
in wavepacket simulations. In [15] we defined binomial wavepackets with localized initial
position and particularized initial wavenumber. In each of the simulations of this section
the initial wavepacket is built from a plane wave (6.1) and (6.8) With= /4, is centred

at x = 16 and has width 32, on the latticeQx < 63. The peak frequency, and the

group velocity depend on the rule parameterandé through the dispersion relation (6.2).

Let us first consider the reflection of such a wavepacket from the possible boundaries.
Figure 7 shows the evolution of the wavepacket with parametetsd andé = z/4 in the
presence of type | boundary conditions with= 0. Reflection from type Il and type llI
boundaries is extremely similar: in each case the significant dispersion of the wavepacket at
the time of interaction with the wall results in a sequence of reflected (smaller) wavepackets.
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Figure 7. Evolution of thekg = 7/4 wavepacket with width 32 for rule parametgrs= 0,
0 = /4. The boundaries are both of type | with= 0.

As we learned in [15], a ‘massless’ wavepacket disperses more slowly than a massive
one. In figure 8 we show the results of a simulation of this case: 7/4 = 6 and the
boundaries are both of type Il with= 0. Reflection from type | and type Il boundaries is
again similar: in each case the wavepacket reflects cleanly and suffers little more dispersion
than if the boundary had not been there.

Now let us consider the effect of rule inhomogenities on wavepacket evolution. Figure 9
shows the results of a simulation in which there is a type | inhomogeneity=aB81: the
rule parametel is constant atr/4 while p is 0 to the left, andr/4 to the right, of
the inhomogeneity. There is both reflection and transmission of the wavepacket at the
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Figure 9. Evolution of the same wavepacket as in the previous figures with rule parameters

0 = 7 /4 everywhere ang = 0 to the left ando = 7 /4 to the right of a type | inhomogeneity
atx = 31. Both boundaries are of type | with= 0.

inhomogeneity: the reflected wave disperses rapidly which causes an interaction with the

left boundary similar to that shown in figure 7 while the transmitted wavepacket has little
dispersion and evolves much as the wavepacket in figure 8.
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y| 2

Figure 10. Evolution of the same wavepacket as in the previous figures with rule parameters
p = /4 everywhere and = /4 to the left and) = /3 to the right of a type Il inhomogeneity
at x = 32. Both boundaries are of type Il with= 0.

Next, let us consider the effect of a type Il inhomogeneity which changes the value
of & from 7 /4 to the left ofx = 32 to n/3 to the right. Figure 10 show the results of
a simulation withp = m/4 everywhere and type Il boundary conditions. To the left of
the inhomogeneity the rule is ‘massless’; this is evident in the negligible dispersion of the
wavepacket and its reflection off the inhomogeneity and then off the left boundary. With
higher probability, however, the particle is transmitted through the inhomogeneity. The
transmitted wavepacket evolves according to a ‘massive’ rule and begins to disperse slowly
so that reflection off the right boundary creates a small trailing wavepacket.

Recall from section 5 that the type | and type Il inhomogeneities can be adjacent with
evolution matrix of the form (5.1). Figure 11 shows the results of a simulation of this
situation: to the left of the inhomogeneity = 0, & = n/4 and to the righto = =/4,

0 = /3. The boundary conditions are of type Ill with = 0= v = ¢. There is the same
concentration of probability at the inhomogeneity that occurs with the type | inhomogeneity
shown in figure 9, together with less transmission and more dispersion to the right than
with the type Il inhomogeneity shown in figure 10.

Finally, recall thep <— 6 duality displayed by the dispersion relation (6.2). Figure 12
shows the results of a simulation in the presence of a type Ill inhomogeneity constructed to
convert the rule parameteps= /3,6 = /4 on the left to the dual pap = /4,60 = 7/3
on the right. The reflected and transmitted wavepackets have more even probabilities than
in figure 11 and evolve with the opposite group velocities. There is some asymmetry, most
evident at the end of the simulation upon reflection from the boundaries; it is due to the
asymmetry of the combined type l/type Il inhomogeneity as well as of the initial condition.
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Figure 11. Evolution of the same wavepacket as in the previous figures with rule parameters
p =0,0 = n/4 to the left andp = /4, 6 = /3 to the right of a combined type l/type Il
inhomogeneity ak = {31, 32}. Both boundaries are of type lll with=0=v =¢.

9. Discussion

We have found dual inhomogeneities consistent with unitary global evolution of the general
one particle rule (1.1)—(1.3): type | implements a change wvhile type Il implements a
change ind; adjacent type l/type Il inhomogeneities implement changes in padind 6.

Each of these three possibilities has a corresponding boundary condition characterized by
additional parameters. Despite this apparent variety of possibilities, the unitarity constraint
is quite restrictive: besides the phase implementation of an inhomogeneous potential [17, 15]
and some degenerate cases, these are the only possible local inhomogeneities up to unitary
equivalence.

A natural question to ask is how these rule inhomogeneities extend to the complete
multiparticle rule set. Even the homogeneous rules for the general one-dimensional QLGA
whose one-particle subspace we have been investigating are quite complicated as there are
effectively two, three and four particle interactions. In [11], however, we found the only
particle preserving generalization of the rules (1.1)—(1.3) wite- O (i.e. with particles
of unit speed). In this case no more than two particles can advect simultaneously to a
given lattice site, whereupon they scatter in opposite directions with amplittide e R.

In fact, the global evolution remains unitary if the constant phase apglensidered in
[22,11,17,21] becomes any function of the lattice si(gs). That is, the two-particle
scattering amplitude can be any inhomogeneous function on the lattice, independently of
the one-particle ‘scattering’ amplitudes—and this independent inhomogeneity extends to
the values ofp (x) at the boundaries. (Note that even in the type | and type Ill boundary
conditions wherévg # 0, and hence a particle scattering off the boundary can have speed 0,
no more than two particles can advect to the same lattice site.) The question of determining
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which boundary conditions are consistent with integrability of the model,the Bethe
ansatz [23,24] as we began studying in [21] or by generalization of the Yang—Baxter
equation [24] as has been used in closely related models [25], is of fundamental interest.

For the purposes of quantum computation with QLGA, we conclude by noting that we
have explicitly formulated the possible local inhomogeneities in the one-dimensional unit
speed model. Extending these multiparticle results to multiple speeds and higher dimensions
seems likely to be algebraically more complicated but conceptually similar—single-particle
single-speed models with inhomogeneities have been constructed in two dimensions
[26,27,17]. More interesting is the question of how to exploit such inhomogeneities to
effect specific quantum computational tasks more efficiently than by simply implementing
a quantum version of reversible billiard computing [13, 20] using a homogeneous rule. The
most natural use of QLGA may be to simulate other quantum physical systems; designing
an inhomogeneous QLGA to be an efficient universal quantum computer may consequently
be difficult. A reasonable intermediate aim would be to solve specific problems particularly
well suited to this architecture. Although neither implements a quantum algorithm, Squier
and Steiglitz’s particle model for parallel arithmetic [28] and Benjamin and Johnson'’s recent
proposal for an inhomogeneous nanoscale cellular automaton adder [29] may provide useful
points of departure.
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